
MODULE 2, LESSON 2.1:
INTRODUCTION TO
NUMPY FOR NUMERICAL
OPERATIONS

THE FOUNDATION FOR FAST NUMERICAL

COMPUTING:

UNDERSTAND NUMPY ARRAYS AND THEIR EFFICIENCY

FOR NUMERICAL DATA IN CLINICAL TRIALS.

NUMPY ARRAYS:
BEYOND PYTHON
LISTS

• What is a NumPy Array? A grid of values,

all of the same type (homogeneous).

• Comparison to Python Lists:

• Lists can hold mixed data types; Arrays

are homogeneous.

• Arrays are designed for numerical

operations; Lists are general-purpose.

• Why it Matters: Clinical data often

involves large numerical datasets (lab values,

vital signs, patient measurements).

ADVANTAGES OF NUMPY: SPEED, MEMORY,
VECTORIZATION

• Speed: Operations are implemented in C, making them significantly faster for large numerical

computations.

• Memory Efficiency: Less memory consumption due to homogeneous data storage.

• Vectorized Operations: Perform operations on entire arrays at once, without explicit

loops. This is concise and fast.

• Clinical Example: Multiplying all blood pressure readings by a conversion factor, or summing a column

of lab values.

BASIC ARRAY
OPERATIONS:
CREATION, SLICING,
FILTERING

• Array Creation: From Python lists (np.array()),

np.zeros(), np.ones(), np.arange().

• Arithmetic Operations: Element-wise

addition, subtraction, multiplication, division.

• Slicing: Selecting subsets of data (rows,

columns, or specific elements).

• Clinical Example: Extracting all glucose

readings or specific patient's vital signs.

• Filtering (Boolean Indexing): Selecting

elements based on a condition.

• Clinical Example: Identifying all lab values

above a certain threshold.

COMMON
AGGREGATIONS
WITH NUMPY

• Purpose: Summarize numerical data efficiently.

• Functions:

• np.mean(): Average value.

• np.median(): Middle value.

• np.std(): Standard deviation.

• np.sum(): Total sum.

• np.min(), np.max(): Minimum and maximum

values.

• Clinical Application: Calculating summary

statistics for cohorts (e.g., mean age, standard

deviation of baseline lab values).

NUMPY IN ACTION: CODE EXAMPLES

Content:

• Dummy Data Description: Numerical data for blood pressure and patient lab results,

provided as CSV content in a separate "Dummy Data" immersive block.

• SAS Code Equivalent (Conceptual): Explain how SAS handles numerical operations

inherently through data steps and procedures (PROC MEANS, WHERE clause).

• Python Code: Provide runnable Python code snippets demonstrating array creation (from

loaded CSV), arithmetic, slicing, filtering, and aggregations.

DUMMY DATA: .CSV

USUBJID,BP_SYSTOLIC,BP_DIASTOLIC,GLUCOSE,CHOLESTEROL,CREATI
NINE

SUBJ001,120,80,90,180,0.8

SUBJ002,135,85,105,210,1.2

SUBJ003,110,70,85,170,0.9

SUBJ004,140,90,110,200,1.1

SUBJ005,125,82,95,190,0.7

Python SAS

--- 1. NumPy Arrays vs. Python

Lists ---

Python List

python_list = [120, 135, 110, 140,

125]

print(f"Python List: {python_list}")

Cannot directly perform element-

wise operations without a loop

python_list * 2 # This would repeat

the list, not multiply elements

SAS doesn't have a direct "array" equivalent to

NumPy's ndarray in the same programmatic sense, as

it operates on datasets. However, the efficiency of SAS

procedures for numerical tasks is analogous to

NumPy's vectorized operations.

Python SAS

--- 2. Advantages: Speed, Memory, Vectorized

Operations ---

Example of Vectorized Operations:

Multiply all readings by a factor (e.g., for unit

conversion, though not typical for BP)

bp_converted = bp_readings * 0.75

print(f"BP Readings * 0.75: {bp_converted}")

Add a constant to all readings

bp_plus_10 = bp_readings + 10

print(f"BP Readings + 10: {bp_plus_10}")

Element-wise operations between two arrays of the

same shape

systolic_bp = np.array([120, 135, 110, 140])

diastolic_bp = np.array([80, 85, 70, 90])

mean_bp = (systolic_bp + diastolic_bp) / 2

print(f"Mean BP (Systolic + Diastolic)/2:

{mean_bp}")

/* SAS Numerical Data & Operations */

/* Define a simple dataset for comparison */

data lab_values;

input bp_systolic bp_diastolic;

bp_mean = (bp_systolic + bp_diastolic) / 2;

bp_diff = bp_systolic - bp_diastolic;

datalines;

120 80

135 85

110 70

140 90

;

run;

proc print data=lab_values; run;

Python SAS

--- 3. Basic Array Operations ---

Creating 2D array (matrix) - e.g., lab results for multiple patients

Rows: Patients, Columns: Lab Tests (Glucose, Cholesterol, Creatinine)

patient_lab_data = np.array([

[90, 180, 0.8], # Patient 1

[105, 210, 1.2], # Patient 2

[85, 170, 0.9], # Patient 3

[110, 200, 1.1] # Patient 4])

print(f"\nPatient Lab Data (2D Array):\n{patient_lab_data}")

print(f"Shape of array (rows, columns): {patient_lab_data.shape}")

Slicing: Accessing elements/subsets

print(f"\nFirst patient's lab data: {patient_lab_data[0, :]}")

First row, all columns

print(f"Glucose levels for all patients: {patient_lab_data[:, 0]}") # All rows,

first column (Glucose)

print(f"Patient 2's Cholesterol: {patient_lab_data[1, 1]}")

Row 2, Column 2

Filtering (Boolean Indexing): Select patients with high glucose (>100)

high_glucose_patients = patient_lab_data[patient_lab_data[:, 0] > 100]

print(f"\nPatients with Glucose > 100:\n{high_glucose_patients}")

proc print data=lab_values; run;

/* SAS Aggregations (using PROC MEANS) */

proc means data=lab_values mean std min max;

var bp_systolic bp_diastolic;

title 'Summary Statistics for Blood Pressure (SAS)';

run;

/* SAS Filtering (WHERE statement) */

data high_systolic;

set lab_values;

where bp_systolic > 130;

run;

proc print data=high_systolic; run;

Python SAS

/* Calculate mean, min, max, std dev using PROC MEANS

(analogous to NumPy aggregations) */

PROC MEANS DATA=mydata.bp_readings MEAN MIN MAX STD;

VAR BP_VALUE;

RUN;

/* Perform a simple arithmetic operation (e.g., subtract a constant) in a DATA

step */

DATA mydata.bp_adjusted;

SET mydata.bp_readings;

BP_ADJUSTED = BP_VALUE - 10; /* Subtract 10 from each value */

RUN;

PROC PRINT DATA=mydata.bp_adjusted;

RUN;

--- 4. Common Aggregations ---

Calculate summary statistics for systolic blood pressure readings
print(f"\nSummary Statistics for BP Readings ({bp_readings}):")
print(f"Mean: {np.mean(bp_readings):.2f}")
print(f"Median: {np.median(bp_readings):.2f}")
print(f"Standard Deviation: {np.std(bp_readings):.2f}")
print(f"Minimum: {np.min(bp_readings):.2f}")
print(f"Maximum: {np.max(bp_readings):.2f}")
print(f"Sum: {np.sum(bp_readings):.2f}")

Aggregations on 2D array (e.g., mean glucose across all patients)
print(f"\nMean Glucose across all patients: {np.mean(patient_lab_data[:,

0]):.2f}")
print(f"Max Cholesterol across all patients: {np.max(patient_lab_data[:,

1]):.2f}")

Python SAS

Explanation (Python):
import numpy as np: The standard convention to import

the NumPy library.

Creating Arrays: np.array() is used to create arrays from

Python lists. You can create 1D (vectors) or 2D (matrices)

arrays.

shape and dtype: Important attributes to understand the

dimensions and data type of your array elements.

Vectorized Operations: Notice how bp_array - 10 or

bp_array ** 2 applies the operation to every element in the

array without needing an explicit loop. This is NumPy's core

strength and why it's so fast.

Slicing and Indexing: Similar to Python lists, but more

powerful for multi-dimensional arrays. bp_array[2:5] selects a

range, and bp_array[bp_array > 125] uses a boolean

condition to filter elements.

Aggregations: Methods like .mean(), .std(), .min(), .max(),

.sum() are directly available on NumPy arrays. For 2D arrays,

axis=0 performs the operation column-wise, and axis=1

performs it row-wise

Explanation (SAS):

DATA step: Used to create a simple dataset with a

single variable BP_VALUE.

PROC MEANS: A powerful procedure for

calculating descriptive statistics across an entire

variable (column), demonstrating SAS's inherent

vectorized processing.

Arithmetic in DATA step: Operations like

BP_ADJUSTED = BP_VALUE - 10; apply to every row

in the BP_VALUE column automatically, which is a

form of vectorized operation in SAS.

CONCLUSION (LESSON 2.1)

• NumPy is the silent workhorse behind much of Python's data science capabilities. While

you might not directly use NumPy arrays as often as Pandas DataFrames in your day-to-

day clinical work, understanding its principles is crucial because Pandas DataFrames are

essentially built on top of NumPy arrays. Its efficiency for numerical operations makes it

indispensable for handling large clinical datasets.

	Slide 1: Module 2, Lesson 2.1: Introduction to NumPy for Numerical Operations
	Slide 2: NumPy Arrays: Beyond Python Lists
	Slide 3: Advantages of NumPy: Speed, Memory, Vectorization
	Slide 4: Basic Array Operations: Creation, Slicing, Filtering
	Slide 5: Common Aggregations with NumPy
	Slide 6: NumPy in Action: Code Examples
	Slide 7: Dummy data: .CSV
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Conclusion (Lesson 2.1)

